A COMBINATORIAL CONDITION FOR THE EXISTENCE OF POLYHEDRAL 2-MANIFOLDS

ΒY

U. BETKE AND P. GRITZMANN

ABSTRACT

Let \mathscr{P} denote a polyhedral 2-manifold, i.e. a 2-dimensional cell-complex in \mathbb{R}^d $(d \ge 3)$ having convex facets, such that set(\mathscr{P}) is homeomorphic to a closed 2-dimensional manifold. Let E be any subset of odd valent vertices of \mathscr{P} , and c_E its cardinality. Then for the number $c_{P(E)}$ of facets containing a vertex of E the inequality $2c_{P(E)} \ge c_E + 1$ is proved. This local combinatorial condition shows that several combinatorially possible types of polyhedral 2-manifolds cannot exist.

A polyhedral 2-manifold \mathcal{P} is a 2-dimensional cell-complex in \mathbb{R}^d $(d \ge 3)$, whose facets are convex polygons, such that set (\mathcal{P}) is homeomorphic to a closed 2-dimensional manifold.

Given an abstract 2-dimensional cell-complex which has the structure of a combinatorial 2-manifold, the question arises, whether there exists a polyhedral 2-manifold which is combinatorially equivalent to it.

For a cell-complex \mathscr{P} let $F_0(\mathscr{P})$ denote the set of all vertices of \mathscr{P} . For every vertex e of \mathscr{P} the valence val (e, \mathscr{P}) is the number of polygons of \mathscr{P} containing e.

It is easy to see that simple polyhedral 2-manifolds, i.e. where all the vertices are 3-valent, do not exist apart from the case of genus 0.

In [1] it is shown that for orientable polyhedral 2-manifolds \mathcal{P} the "valencedistance" $\sum_{e \in F_0(\mathcal{P})} (val(e, \mathcal{P}) - 3)$ is bounded from below by a constant determined by the genus of set(\mathcal{P}). Here we give a local combinatorial condition for the existence of polyhedral 2-manifolds.

THEOREM. Let \mathcal{P} be a polyhedral 2-manifold, E any subset of odd valent vertices of \mathcal{P} , and $c_E := \operatorname{card}(E)$ its cardinality. Then for the number $c_{P(E)}$ of facets containing a vertex of E we have:

$$2c_{P(E)} \ge c_E + 1.$$

Received May 4, 1981 and in revised form January 7, 1982

REMARK. In locally changing the simple combinatorial 2-manifolds with minimal number of facets of genus g greater than one (cutting off a vertex and suitably inserting other complexes) one obtains non-trivial examples of combinatorial 2-manifolds which by this theorem cannot exist as polyhedral 2-manifolds. The above condition further excludes special types of equivelar polyhedral 2-manifolds (cf. [2]). The series of polyhedral 2-manifolds established in [3] shows that a similar condition involving even valent vertices is not valid, so that the restriction above is natural.

PROOF. For $e \in E$ and a polygon p of \mathcal{P} containing e let $\beta(e, p)$ denote the internal angle of p at e. We set $\gamma(e) := \sum \beta(e, p)$ where the sum is taken over all polygons p containing e.

Since the star st(e, \mathcal{P}) is topologically a disc, we can list the facets of st(e, \mathcal{P}) in cyclic order. Let $p_1, \dots, p_{val(e,\mathcal{P})}$ be such an enumeration and let, for $i = 1, 3, \dots, val(e, \mathcal{P}) - 2$, α_i denote the smaller of the two angles determined by the two edges of p_i and p_{i+1} containing e and belonging to exactly one of the two polygons. Then clearly

$$\alpha_i \leq 2\pi - \beta(e, p_i) - \beta(e, p_{i+1})$$

and equality holds if and only if the affine hulls $aff(p_i)$ and $aff(p_{i+1})$ are the same. Since

$$\beta(e, p_{\operatorname{val}(e, \mathscr{P})}) \leq \alpha_1 + \alpha_3 + \cdots + \alpha_{\operatorname{val}(e, \mathscr{P}) - 2}$$

we have

$$\beta(e, p_{\operatorname{val}(e,\mathscr{P})}) \leq \sum_{i=1}^{\operatorname{val}(e,\mathscr{P})^{-1}} (\pi - \beta(e, p_i)),$$

where equality holds if and only if $val(e, \mathcal{P}) = 3$ and $aff(p_1) = aff(p_2) = aff(p_3)$. Thus

$$\gamma(e) \leq (\operatorname{val}(e, \mathcal{P}) - 1)\pi$$

and therefore

(1)
$$\sum_{e \in E} \gamma(e) \leq \pi \sum_{e \in E} \operatorname{val}(e, \mathscr{P}) - \pi c_{E},$$

with the above condition of equality. Because of the elementary identity

$$\sum_{e \in F_0(p)} \beta(e, p) = \pi(\operatorname{card}(F_0(p)) - 2)$$

Vol. 42, 1982

for a polygon p and since $\beta(e, p) < \pi$, we have

$$\sum_{e \in F_0(p) \cap E} \beta(e, p) \ge \pi(\operatorname{card}(F_0(p) \cap E) - 2),$$

which yields

(2)
$$\sum_{e \in E} \gamma(e) \ge \pi \sum_{e \in E} \operatorname{val}(e, \mathcal{P}) - 2\pi c_{P(E)},$$

where equality holds if and only if $F_0(p) \subset E$ for any polygon p considered above.

From (1) and (2) we get

$$\pi \sum_{e \in E} \operatorname{val}(e, \mathcal{P}) - 2\pi c_{P(E)} \leq \sum_{e \in E} \gamma(e) \leq \pi \sum_{e \in E} \operatorname{val}(e, \mathcal{P}) - \pi c_{E}$$

and thus

$$(3) 2c_{P(E)} \ge c_E$$

Since equality cannot occur in (1) and (2) simultaneously (3) is a strict inequality which completes the proof of the theorem.

References

1. P. Gritzmann, Upper and lower bounds of the valence functional, to appear.

2. P. McMullen, Chr. Schulz and J. M. Wills, Equivelar polyhedral manifolds in E³, to appear.

3. P. McMullen, Chr. Schulz and J. M. Wills, Polyhedral manifolds in E^3 with unusually large genus, in preparation.

Universität Siegen Hölderlinstr. 3 D-5900 Siegen 21, FRG