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A COMBINATORIAL CONDITION FOR THE 
EXISTENCE OF POLYHEDRAL 2-MANIFOLDS 

BY 

U. BETKE AND P. GRITZMANN 

ABSTRACT 

Let ~ denote a polyhedral 2-manifold, i.e. a 2-dimensional cell-complex in R d 
(d-> 3) having convex facets, such that set(~) is homeomorphic to a closed 
2-dimensional manifold. Let E be any subset of odd valent vertices of 3~, and c~ 
its cardinality. Then for the number cp~E~ of facets containing a vertex of E the 
inequality 2cp~,~>_-c,~ + 1 is proved. This local combinatorial condition shows 
that several combinatoriatly possible types of polyhedral 2-manifolds cannot 
exist. 

A polyhedral  2-manifold 3 ~ is a 2-dimensional cell-complex in R a (d = 3), 

whose facets are convex polygons,  such that s e t (~ )  is homeomorph i c  to a closed 

2-dimensional manifold. 

Given an abstract 2-dimensional cell-complex which has the structure of a 

combinatorial  2-manifold, the question arises, whether  there exists a polyhedral  

2-manifold which is combinatorial ly  equivalent  to it. 

For a cell-complex ~ let F, ,(~) denote  the set of all vertices of ~.  For  every 

vertex e of ~ the valence val(e, ,@) is the number  of polygons of ~ containing e. 

It is easy to see that simple polyhedral  2-manifolds, i.e. where all the vertices 

are 3-valent, do not exist apart  from the case of genus 0. 

In [1] it is shown that for orientable polyhedral  2-manifolds ~ the "valence-  

dis tance" E,~vo~,~(val(e, ~ )  - 3) is bounded  from below by a constant  de te rmined  

by the genus of se t (~) .  Here  we give a local combinatorial  condit ion for the 

existence of polyhedral  2-manifolds. 

THEOaEM. Let ~ be a polyhedral 2-manifold, E any subset of odd valent 

vertices of ~, and cE :=  ca rd(E)  its cardinality. Then for the number c~E~ o[ [acets 

containing a vertex of E we have : 

2cptE) _--> cF + 1. 
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REMARK. In locally changing the simple combinatorial 2-manifolds with 

minimal number of facets of genus g greater than one (cutting off a vertex and 

suitably inserting other complexes) one obtains non-trivial examples of com- 

binatorial 2-manifolds which by this theorem cannot exist as polyhedral 2- 

manifolds. The above condition further excludes special types of equivelar 

polyhedral 2-manifolds (cf. [2]). The series of polyhedral 2-manifolds established 

in [3] shows that a similar condition involving even valent vertices is not valid, so 

that the restriction above is natural. 

PROOF. For e E E and a polygon p of ~ containing e let [3(e,p) denote the 

internal angle of p at e. We set T (e) : - -E fl (e, p) where the sum is taken over all 

polygons p containing e. 

Since the star st(e, ~ )  is topologically a disc, we can list the facets of st(e, ~ )  in 

cyclic order. Let p~,.. ",pval(e.:~) be such an enumer~ttion and let, for i = 

1, 3,. �9 val(e, ~ )  - 2, a~ denote the smaller of the two angles determined by the 

two edges of p, and p~+~ containing e and belonging to exactly one of the two 
polygons. Then clearly 

a, <- 27r - ~(e,  p i ) -  [3(e,p,§ 

and equality holds if and only if the afline hulls aft(p,) and aff(p,§ are the same. 

Since 

/3 (e, pv~.~,,~)) --- a~ + a3+" �9 �9 + ava~(,.~,)-2 

we have 

val(~_~)-- 1 
fl(e, pv,,,,.~,) <- ( T r - f l ( e , p , ) ) ,  

i = l  

where equality holds if and only if val(e, ~ ) =  3 and aff(p~)= aft(p2)= aft(p3). 

Thus 

7@)_- < (val(e, ~ ) -  1)Tr 

and therefore 

(1) E T(e)---- 7r E val(e, ~ ) -  7rcE, 
e ~ E  e ~ E  

with the above condition of equality. Because of the elementary identity 

[3(e,p) = Ir(card(Fo(p))- 2) 
e E Fo(p  ) 
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for a polygon p and since /3(e,p)< r we have 

[3(e,P)>= Tr(card(Fo(P)fq E) -  2), 
c E F o ( p ) N E  

which yields 

(2) T(e)>= r ~ val(e, ~)-2rrcj,(E), 
e E E  e E E  

where equality holds if and only if F.(p)C E for any polygon p considered 

above. 
From (1) and (2) we get 

r ~ val(e, ~ )  - 27rcp,E, =< ~ 7(e) =< ~r ~ val(e, ~ )  - 7rcE 
r  e E E  clUE 

and thus 

(3) 2c~,~E~ ~ cE. 

Since equality cannot occur in (1) and (2) simultaneously (3) is a strict inequality 

which completes the proof of the theorem. 
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